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Equationafdutomated
Theorem Poving

¥ Want to sole the word problem
automaticait

¥ Does a bnite set of identities Gheory)
entail another identity?



Exampld heory:
Groups

¥ For examplethe theory of groups (G) is
axiomatized g three identities:

rxlr~x zxx tal sx(yxz)~(z*xy)*z




Word Problem br
Groups

¥ The word problem for G:is an identity a
conseguence of the axioms ofagip theory?

¥ E.g.a left-irverse lemma:




Proof about Gioups

¥ Yes there is a left inerse lemma! He®the




Automating Goup
Theory Poofs

¥ That proof looked a little tricky
¥ Q) How long did it tale me to bnd it?

¥ A) About 0.2s B | used an automated
theorem prover! (Much longer with just
my head.)



Group Theory
Completion

¥ Used a tool calleWaldmeister that
Implements an afgithm called
completion.

¥ Input:theory (Pnite set of identities).

¥Output: rewriting system (also called a
completion) used to decide whether o
not an identity holds.



Group Theory
Completion

¥ Input:G
¥Output: rewriting system equivalent to G.

¥ To prove an identity holdgewrite both
sidesthen test br equality

lxx — x rxl—x 11 -1

@ o (zxy) " oz xy (xy)rz—ozx(y*2)

rxr i =51 r lyxr—1

pollE syl n g xl@nn —u




Group Theory Poofs
Made Easy

¥ With a completionjt® easy to sok the
word problem.Works every time.

(y!z)! (et y)=t " (yla)! (e y')
"oyl (x! (e yY)
yly™!
1

(y «X) " x (X xY) (y hax71) s (x*y)
y~ s (X7 x (X xY))
y~lxy
1




Another Completion

Leaing i~ 0y 3 ) 2 B s s (W ),

z vzl h(z*xy) = h(z)*h(y)

¥ Input:groups + one endomorphism (GE

¥Output: completion br GE;. Use this to
sole the word problem br GE:. Easy!




Completion Falls!

12205 s 7 B Al (zxy)*x2=z*(y*2)

flxxy) =~ f(x)x fly) glexy)=g(x)*gly) f(z)*g(y)~gy)*f(r)

¥ Input:theory of goups + two comnuting
endomorphisms (CGH

¥ Output:...not a completion!

¥ Without a completionwe must use our
heads to pove identities hold in CGE
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Our Mission

¥ Revise the algrithm used lyWaldmeister
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But Prst...

¥ Waldmeistegalg@rithm relies on esults in
the exciting Peld oterm rewriting.

¥ Today® agenda:

¥ Cover important details about the wrd
oroblem and term ewriting.

¥ Describecompletion (Waldmeisteg)
algrithm).

¥ See wly completion fails and thefix it.
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All About theWord
Problem

¥ [t@undecidable (in general).

¥ Can decide the wrd problem br some
theories,but not all.
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Word Problem Ppofs

¥ How do we know an identityholds in a
theory? Find a qmof.

¥ Proof is a sequence of termstarting with
one side of the identity and ending with th
other side

¥ Successesterms ceated ly replacing
Instances of one side of the thepaxioms
with instances of the other

¥ Easy to checlyut had to bnd.
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Solving th&Vord
Problem Ly Rewriting

¥ |deaorient axioms D nw calledrules.

¥ Replace instances of Ihs with instances o
rhs D calledrewriting.

¥ Rawrite terms to normal form.

¥ Two sides of identity ha same normaldrm
Iff identity holds.
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Reawriting to Normal
Form

¥ To sole the word problem lile this,normal
forms nust:

¥ require bnitey mary reductions,

¥be unigue B same endsult regadless of
reduction sequence
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Properties of Ra&vriting
Systems

¥ Corresponds to the tw most impotant
properties of rewriting systems:

¥ Termination: no inbnitey long
reduction sequences.

¥ Confluence:if a term is ewritten to
distinct termsthen those terms can be
rewritten to a common term joined).

¥ Termination + confRuence = convergence.
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Rewriting Example 1

¥ The non-conBuenterminating system

applied to termf(x,g(x)) yields ag of
these eduction sequences:

1. f(z,g(x)) =

2. flz,9(x)) = f(z,2) — h()



Rewriting Example 2

¥ The conRuentyonterminating system

F(xX) = gahx)) g(x) =1 (x)

applied to termf(x) yields this looping
reduction sequence:
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Rewriting Example 3

¥ The convergent system

ack(O,n) - n+ 1
ack(m + 1,0) — ack(m, 1)

ack(m+ 1,n+ 1) — ack(m,ack(m + 1,n))

applied to termack(3,3) yields this long
reduction sequence:

ack(3,3) ! ack(2,ack(3,2))! ack(2, (ack(2,(ack(3,1)))))!
ack(2, (ack(2, (ack(2,ack(3,0)))))) ! ack(2, (ack(2, (ack(2,ack(2,1))))))!

ack(2, (ack(2, (ack(2,ack(1,ack(2,0)))))))! &a! 61
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Proving Ravriting
Properties

¥ To sole the word problem with rewriting,
systems mast be terminating and conf3uen

¥ How do we prove these poperties?
¥ What if we can?
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ProvingTermination

¥ Prove a system is terminating with special
well-founded odering elation:a
reduction order.

¥ Theorem a system is terminating iff a
compatible eduction oder exists.

¥ An order > is compatible with a rewriting
system if > r for all rules/! r.
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ProvingTermination

¥ Termination is undecidablegduction fom
halting poblem),so Pnding a compatible
ordering Is tough.

¥Cou|d also be impossible Pgeary theory
with the identityx + y =y + x IS not
compatible with ay reduction oder.
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AutomatedTermination
Checlers

¥ Interesting asidehere are nifty tools to
automatically prove termination.

¥ Works for systems that a compatible with
arny one of a variety of@duction oders.

¥ E.g.AProVE:fastefective and poduces
human-eadable poofs.

¥ Could be useful later?
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Deciding Conf3uence
for Terminating Systen

¥ Try to rewrite a common instance of ta
rulesO |hs to aaffent terms:t;" s/ !t

¥Try to join those terms ® a common term:
Bl cass kst s

¥(t1 t2) called acritical pair.

¥ Theorem joinability of all critical pairs
iImplies conf3uencfor terminating
systems.
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Critical Pair Example |

¥ Common instances of rulesO |banites
two ways:

g(z) ' flg(x),g(g9(x))) " flg(x),x)



Non-Conl3uent Systen

¥ If system is not conRuergpmetimes & can
Pnd anequivalent system that is.
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Creating Conf3uent

Systems

¥ Stat with a terminating systencompatible

Wit

¥ Ca

N reduction oider >.

culate a non-joinable critical pair,(2)

¥ft; > t;,thenadd rule t; ! t; to system.

¥ Continue until all critical pairs arjoinable
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Critical Pair Example

g(x) ' flg(x),g(g9(x))) " f(g(x),x)

¥ Add unjoinable critical pair agwrite rule.
New, equivalent system:

31



Completion

¥ Calledcompletion, invented by Knuth.

¥ Completion carsolve the word

¥ Use the equivalentovergent rewrite
system (thecompletion) to normalize
both sides of ay identity

¥ If normal brms are the sameidentity
holds,otherwise it doesnO
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Limits of Completion

¥ Completion doesrn@iways work:

¥ An unorientable critical pair could be
generated (completiofails);

¥Critical pair generation might not
terminate

¥ Fails ony if reduction oder is incompatible
with the new rule.

¥ (Can shov that OinPniteO egutions lead to
semidecision mcedure.)
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Completion Specibec
Formally

¥Completion typicall speciPed aan
inference system.

¥ Operates on tuples (E,R) D set of identitie
and rewrite system.

¥ Start with (Eo, D) and Pnish with@,R-).

¥ E, is the theory andR- is an equivalent
convergent system (a completion).

34



Completion as an
Inference System

(EU{s=t},R)
orient : (E,RU{s —t}) if s >t
(E,R)
deduce: (FU{s~t},R) if s—ru—pgt
(EU{s =~ s}, R)
del ete : (E, R)

(EU{s~1t},R)
(EU{u=~t},R)

simpl ify :
(E,RU{s —t})
(E,RU{s — u})
(E,RU{s —1})
(EU{v=t},R)

compose:

colla pse:
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Correctness of
Completion

¥ If executions eentualy consider all critical
pairs (ae fair) and can orient gery identity
(Isnon-failing), completion succeeds.

¥ Theorem: a non-failingair execution with
identitiesk yields a comergent,equivalent
rewriting systenmR, which can be used to
solhe the word problem br E.
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Completion and CGE

lxx ~x 7 smgp a9 1l (90 s ) 2 2 5 e (2 )

flexy) = flz)* fly) gl@xy) =glx)xg(y) [flz)*g(y) = g(y) * f(z)

¥ Recallcompletion doestn@ork with the
two commuting endomorphisms

(CGE) theory.

¥Doesnf3fai| (technicall) because it neer
stars.

¥ How to orient identitieshat reduction
order to use?

37



The Reduction Oder
Requiement

¥ Completion requires the
compatible eduction o0

¥ Ccanfprnd oneWeée loo

¥ Een if we found ongwe

user to povide a
er.

ed.
couldniGpecify it

P no oders suppoted by tools (eq.
Waldmeister) a& compatible

¥ Without an order, completion is useless.
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Issues with Completio

1. Compatible orders hard for the user to find
and specify.
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The Orient Rule

(E#{s$ t},R)

ORIENT: (E,R#{s! t})

¥ Problems manifested in the orient rule -
only place the presupposed order is
mentioned.

¥Comp|etion would work for more theories
if the system provided the order instead of
the user.
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A New Orient Rule

¥Idea: what if we use a ermination checker
instead?
¥ New orient precondition: require that

addings! t presewnes termination of the
rewriting system

¥ Implies theexistence of a compatible
reduction oder.



Correctness of the Ne
Orient Rule

¥ Different from standagd completion in an
Important way b

¥ Termination implies the existence of a
compatible oder, but the order could be
different each time the orient rule Is

applied.

¥Like perbrming completion withmultiple
orders.



Completion with
Multiple Orders

¥ A version of completion with raltiple
orders was useaof years (without
correctness poof).

¥ Changing aders is a usefukhture.

¥ If an unorientable identity is encountst,
just Pnd another compatible der and leep

going.
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Multiple Orders Not
Correct

¥Correctness an open pblem br years.
¥ Settled in the negetive by Sattler-Klein in ©4.

¥ Multiple oders can yield non-conf3uent,
non-terminating systems.




A Correct Special Cas

¥ But SattlerKlein also poved that one kind
of multi-ordered completion is carect:

¥ For bnite executions withoutcompose or
collapse, completion works with multiple
orders.
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Compose and Collase

(E,RU{s — t})

COMPOSE:;: E,RU{s — u}) ift g u

(
(E,RU{s —t})
(FU{v=t},R) if s g v

COLLAPSE:

¥Why?These ae the ony rules that change
or remove rules fom the curent rewriting
system.

¥ Without these, the intermediate ewrite
systemsdrm anincreasing chain.

¥ Thefinal order could hae been used &m
the statt without failure.
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Constraint System

¥ Could use ne orient rule without compose
and coll@se but they@ good for
performance

¥ Insteadcheck termination of aonstraint
rewriting system not afficted ly compose
and collpse

¥ | emmaTermination of constraint system
Implies termination of@writing system and
existence of inagasing chain ofduction
orders.
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Revised Completion

(E#{s9$ t},R,C)

ORIENT: (E,R#{s% t},C# {s% t}) if C# {s% t} terminates
8, 15, ©)

DEDUCE: (E#{s$ t},R,C) if s& pu%pt

(E#{s$ s}, R,C)

DELETE: (E,R,C)

E#{s$ t},R,C)

SIMPLIFY:

(
(E#{u% t},R,C) if s%pu
(E,R#{s% t},C)
(E,R# {s% u},(C) ift%pru
(E,R#{s% t},C)
(E#{v$ t},R,C) if s%p v

COMPOSE:

COLLAPSE:

¥ Key diferencesconstraint systenC and
termination pedicate in orient pecondition.
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Completion Searh

¥ What if a if a rule can be oriented tw
different ways?

¥ Jist try both.Search for a correct
completion.

¥(Seach a/olds pesky inPnite &cutions
mentioned earlie)

¥ Breadth-brst seah guarantees that evwill
eventualy bnd a completion.
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Revised Completion

¥ Revised method ixorrect.

¥ Order isdiscovered, not provided.

Y Wit

the

N perfect termination-checking abiljty
method completes antheory

compatible with someeaduction oder.

¥ With real termination-checking pgram
that decides a class of @ers O, then revised
method completes antheory compatible
with an orer in O.
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Slothiop

¥ Implementation of evised pocedute:
Slothiop.




Completion of CGEk

¥Slothrop completes a variety of theories
(e.g.groups and other algebraic struces).

¥ Completed CGE Dfirst ever automatic
completion!

(' ! z# 2V (y! 2) fQO# 1

gl gp e Al (f(z)1# f(z7})

i L i bt % il s w)

o (@ )i ow f@Y(fW! ) # fz!y)! 2
z i (!t y) # oy g # 1

(zl ' # y 'zt (g(z))' # g(=)

1tz # x g(x) ! g(y) # g(z! y)

zl 1# =z g@) ! (g ! 2)# g(z! y)! 2
1'# 1 f@)! g(y) # g(y)! f(x)

(e i f@)! (g(y)! 2) # g(y)! (f(z)! 2)
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Performance

¥ Time:1m to bPnd G completior2m for GE,
1.5h br CGE.
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APrOVE Is Fast




Slothiop

¥ Efbciency is the onlimitation of technique

¥ Works well on small theoriedyut is slav on

¥

arge theories.

mproved termination checking will help

petter seach heuristics will help mea:

¥ Open question:when is a paial

completion neagl a completion?
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Conclusion

¥ Thanks to:
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Conclusion




